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Finite-element analysis of setting expansion 
in dental gypsum-bonded investment 
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Department of Dental Materials, School of Dentistry, Hiroshima University 1-2-3, 
Kasumi-cho, Minami-ku, Hiroshima, Japan 

A parameter study with use of the finite-element method (FEM) was conducted for the 
determination of the setting expansion of gypsum-bonded investment. In this study the FEM 
was applied to the setting expansion within an elastic ring, and the results of FEM analysis 
were compared with the values measured and the values analytically obtained. The agreement 
of the results was clarified when the step number for calculation was increased. The present 
formulae appear to be reasonable for comparison of the value for setting expansion. 

1. Introduction 
In dental metal casting, gypsum-bonded investment as 
a mould material requires setting expansion to com- 
pensate for thermal shrinkage of the molten metal [1]. 
Because both the pattern invested in a gypsum-bon- 
ded investment and the casting ring surrounding the 
mould restrict the setting expansion, the setting ex- 
pansion is not uniform within the casting ring. There- 
fore, the investment could deform, affecting the casting 
accuracy of the metal crown [1]. We have already 
introduced a method of calculating the setting ex- 
pansion of gypsum-bonded investmen(for numerical 
analysis of the deformation of an investment, and have 
applied this method to setting expansions under a 
simple condition [2, 3]. The purpose of this study was 
to apply the finite-element method (FEM) to deter- 
mine the setting expansion of an investment for the 
further investigation of setting expansion under more 
practical conditions. It is thus clarified whether the 
calculated values of the setting expansion within an 
elastic ring by the FEM are in good agreement with 
the results previously reported [3]. 

2. Method 
2.1. FEM for expansion of an investment 
As has been reported [1], the setting expansion of an 
investment under loading conditions can be calculated 
by using elastic analysis, because the relationships 
between stress and strain for an investment become 
the same as for an elastic body when E'/ka o exp( - kt) 
is substituted by E, ~s/Ot by s, v' by v and ka o 
exp( - kt) by s T  (see Appendix A). 

For the FEM, first, time is divided into SN steps (see 
Appendix B). 

The relationships between the total step number SN 
and time duration TD(N) in step N are 

TD(1) = tEND(RA- 1 ) / ( R A ^ S N -  1) (1) 

TD(I) = [RA^(I  - 1)] ,TD(1) (2) 

N 

TIM(N) = ~ TD(K) (33 
K = I  

where RA is a division ratio, and tEND = 120 rain. 
Consider expansion during the finite time duration 

At in time step N. The relationship between stress and 
strain (see Equation A1), for example, becomes 

A~ = ka o e x p ( -  kt) 

x (1 + cyxx/E' -- v' C~yy/E' -- v' ~=z/E')At (4) 

where E ' = 5 . 0 k g c m  -a, v '=0 .2 ,  k = 0 . 0 3 2 m i n  -1 
and a 0 = 0.009. 

In this step N, the following values are used for the 
FEM: 

EI(N) = E'/[ka o exp{ - k[TIM(N) 

- TD(N)/2]}TD(N)] 

for E'/[ka o e x p (  - kt)at] and 

TC(N) = kao e x p { - k [ T I M ( N ) - T D ( N ) / 2 ] } T D ( N )  

for kao exp( - kt)At  

in Equation 4. Then Equation 4 becomes 

Aa = [cy~x - v'(%, + cy=)]/EI(N) + TC(N) (5) 

where TC(N) is a free setting expansion in step N. 
Equation 5 indicates that the deformation of the 

investment in time step N is identical to the deforma- 
tion of an elastic body with Young's modulus EI(N), 
Poisson's ratio 0.2 and uniform thermal expansion of 

T = TC(N). Therefore, FEM analysis for an elastic 
body is available for the calculation of the setting 
expansion when the boundary conditions are 
given [4]. 

In Fig. t the relationships between N and TC(N) at 
ratios of RA = 1.0, 1.2, 1.4 and 1.6 are shown. In this 
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study RA was determined as the deviation of TC(N) 
remains small. Therefore, RA = 1.4 at SN = 10 and 
RA = 1.2 at SN = 20. 

2.2. Application to setting expansion 
within an elastic ring 

The FEM was applied to the setting expansion of an 
investment within an elastic ring under the same 
conditions as in [3]. The elastic rings had an inner 
radius of 22 ram, height of 10 mm, and three different 
outer radii of 22.3, 23.0 and 25.0 mm. Fig. 2 shows the 
finite-element model: the investment was divided into 
48 triangular elements and the ring into eight ele- 
ments. The Young's modulus and Poisson's ratio of 
the ring were 30 000 kg cm -2 and 0.33, respectively. 

Fig. 3 shows the flow chart of analysis and bound- 
ary conditions. Consider the calculation in step N. 

The program can be divided into two parts 
(I and II) as follows. 

I. In the former part of this step N, the amount of 
deformation of the investment is calculated. As 
boundary conditions, the displacement at r = 0 in the 
radial direction is considered to be zero and the 
displacement in the z-axis direction at nodal point 
15, the half-height of the ring, is also zero. Further- 
more, the force acts on the investment mould from 
the ring at contact points between the investment 
and the ring, and the value of this external force has 
to be taken in as a boundary condition, as will 
be seen below. Under these boundary conditions the 
displacement of nodal point I of the investment in 
step N, TXI(N, I) and TYI(N, I), can be calculated 
as the deformation of an elastic body with Young's 
modulus of E = EI(N), Poisson's ratio of 0.2 and 
uniform thermal expansion of s T =  TC(N) by the 
FEM for an elastic body. Finally, the displace- 
ment of nodal point I of an investment at 

N 

TIM(N) becomes D X I ( N , I ) =  ~ T X I ( K , I )  and 
K = I  

N 

DYI(N, I) = Y. TYI(K, I). 
K = I  

IIa. In the latter part of this step N, the displace- 
ments of the ring at nodal point K, TXE(N, K) and 
TYE(N, K), are calculated by FEM analysis, and the 
boundary conditions are as follows: as shown in 
Fig. 3, the number of contact points between the 
investment and elastic body, NIE, is 5, and nodal 
points 7, 14, 21, 28 and 35 of the investment contact 
with nodal points 1, 3, 5, 7 and 9 of the ring, respect- 
ively. At these contact points between the investment 
and the ring, the displacement of the investment and 
the displacement of the ring in the radial direction 
could be equal, for example, TXE(T, 1 )=  DXI(T, 7) 
and TYE(T, 1) = free. Furthermore, the displacement 
of investment and ring in the z-axis direction at the 
half ring height could also be equal, TYE(T, 5) 
= DYI(T, 21). The displacement of the ring at step N 
was therefore calculated. 

IIb. Finally, from the calculated displacement of 
the ring U(N, I), where U(N, 2 ,  I -- 1) = TXE(N, I) 
and U(N, 2* I ) =  TYE(N,I) ,  the applied external 
force at each nodal-point, F(N, J), can be calculated as 
K(I,  J)U(N, I ) =  F(N, J), where K(I, J) is the total 
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Figure 1 Values of TC(N), the free expansion in step N, at various 
time division ratios RA: (0) RA = 1.0, (D) RA = 1.2, (A) RA = 1.4 
and (©) RA = 1.6. (a) SN = 10 and (b) SN = 20. 
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Figure 2 The finite-element model for the setting expansion of an 
investment within an elastic ring. 

stiffness matrix. These values of the external force will 
be taken into the boundary conditions for the calcu- 
lation for the investmeniL in the next step, N + 1 
(Fig. 3). No frictional force between the investment 
and the ring was considered in this case. 

We need to add contact-related boundary condi- 
tions between the investment and elastic body to the 
usual boundary conditions for each analysis. All cal- 
culations were made on a personal computer (PC- 
9801VM, NEC Ltd, Tokyo). 

3. Results and discussion 
The results of the FEM analysis shown in Fig. 4 
represent the expansions of nodal point 21 of the 
investment. When SN = 10 the results were reason- 
able for the cases of 0.3 and 1.0 mm thickness. How- 
ever, the calculated values oscillated in the case of 
3.0 mm thickness when SN = 10 for the following 
reason. Once the pressure applied on the surface of the 
investment becomes sufficiently large to diminish the 
investment in step N, the deformation of the ring 
becomes small in this step N. In the next step N + 1, 



S t a r t  

J 

S t e p  N -1 
(1) A n a l y s i s  f o r  i n v e s t m e n t  

D i s p l a c e m e n t  r e l a t e d  c o n d i t i o n s  a r e  as  f o l l o w s :  
T X I ( N , I ) = O ,  T Y I ( N , / )  i s  f r e e  a t  1 = 1 , 8 , 2 2 , 2 9  
TXI(N, 15)=0,  TYI(N, 15)=0 a t  I=15 

E x t e r n a l  f o r c e  r e l a t e d  b o u n d a r y  c o n d i t i o n s  a r e  
o b t a i n e d  i n  s t e p  N-1. 

¢ 
(Ha) A n a l y s i s  f o r  r i n g  

D i s p l a c e m e n t  r e l a t e d  c o n d i t i o n s  a r e  as  f o l l o w s ;  
TYE(N,I)  i s  f r e e  a t  I = 1 , 3 , 7 , 9  
TYE(N, 5)=DYI(N, 21) and 
TXE(N, 1)=DXI(N, 7) ,  TXE(N,g)=DXI(N, 14) 
TXE(N, 5)=DXI(N, 21),  TXE(N, 7 )=DXI(N,  28) 
TXE(N, 9)=DXI(N, 35) 

I 
(Eb) C a l c u l a t i o n  o f  e x t e r n a l  f o r c e  a c t i n g  on r i n g  

by K(I,J)U(N,J)=F(N,Z), where K(X,J) i s  t o t a l  
s t i f f n e s s  mat r ix ,  U(N, 2*I-I)=TXE(N,]) ,  U(N, 2*I)= 
TYE(N,I), FXE(N,Z)=F(N, 2*X-1), FYE(N,I)=F(N, 2*I) 

External  fo rce  r e l a t e d  boundary c o n d i t i o n s  fo r  
investment in step N+I are as follows: 

FYI(N+I,])=0 at I=7,14,28,35 
FYI(N+I,21)=-FYE(N, 5) and 

FXI(N+I,7)=-FXE(N,I), FXI(N+I,14)=-FXE(N, 3) 

FXI(N+I,21)=-FXE(N, 5), FXI(N+I,28)=-FXE(N, 7) 

FXI(N+I,35)=-FXE(N, 9) 

Step N+I N < S ~  

t N =sN 
ENb 

Figure 3 Flowchart of analysis and boundary conditions. 
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Figure 4 Results of F E M  analysis and analytical calculations: (&) 
S N =  10 and (©) S N = 2 0  by the FEM; (- -) by Equation 6. 
Thickness: (a) 0.3 ram, (b) 1.0 m m  and (c) 3.0 mm. 

therefore, the pressure applied on the investment 
mould could be small. Finally, the expansion in step 
N + 1 is expected to be large and the def0rmation of 
the elastic ring should also be large. Then, the ring 
again applies a large restrictive force on the invest- 
ment mould in the next step. This oscillation dimin- 
ished when the total step number SN increased (Fig. 
4). In the case of 3.0 mm thickness, the result was 

(s.0) 
ca) 

=, ~ ~  0 59 

1 (003) 
05  

/ " / /  (b) 
g " /  . . . .  o.3~ 
_ ~ / - - - -  I {0.00 

" (c) (O.Ol) 

I I 
O0 3 0 6 0 9 0 120 

T i m e  ( m i n )  

Figure 5 Setting expansion curve at each thickness: ( - - )  meas- 
ured and G - -) by the FEM, SN = 20. Thickness (a) 0.3 ram, (b) 
1.0 mm and (c) 3.0 mm. 

reasonable when the total step number adopted was 
20. In Fig. 4 the values calculated for the expansion by 
Equation 6 are also shown: 

rLE' I ( (1 - v')a0 
U - 1 - v' 1 - exp E'L 

x [ 1 -  e x p ( - k t ) ] ) l  (6) 

(1 - v)A 2 + (1 + v)B 2 
L = E(B 2 _ A 2) 

where A and B are the inner and outer radii, respect- 
ively, and E and v are the Young's modulus and 
Poisson's ratio of the ring, respectively. Equation 6 
was obtained analytically for the setting expansion 
within an elastic ring under the same conditions as in 
[3]. As Fig. 4 shows, the two results obtained by the 
FEM and Equation 6 agree well with each other. 

Fig. 5 shows the measured expansion within the 
rings reported in [3]. The results from the FEM 
analysis agreed fairly well with the measured results. 
In summary, FEM analysis of the setting expansion of 
a gypsum-bonded investment could be useful, com- 
pared with the previous study [3]. 

A p p e n d i x  A 
The relationships between the stress and strain for the 
investment are as follows [2]: 

~Cxx 
5t 

~ayy 

~t 

~azz 
Ot 

- kao e x p ( -  kt) 

Oxx v' o-,; v'o~z "~ (al)  
x 1 +  E' E' E ' }  

- kao e x p ( -  kt) 

oyy v' o~  V'Oxx 
x 1 +  E' E' E ' /  (A2) 

o~  v' ox~ v'%, ) 
k a o e x p ( - k t )  1 + E' E' E' 

(A3) 

3 3 1  



~F.xy 

~t 

~eyz 
~t 

~ez~ 

at 

- ka o e x p ( -  kt)(1 + v')z~/E' (A4) 

- kao exp( - kt) (1 + v')~yjE' (A5) 

- ka o exp( - kt) (1 + v')rz~/E' (A6) 

where k, ao, v' and E' are constant values obtained 
from setting expansions under constant loading condi- 
tions. 

According to the theory of elasticity the relation- 
ships between stress and strain are defined 
as [5]  

~xx = I-a~x - v(a~ + azz)]/E + o~T (A7) 

~yv = [cyvy -V(az~ + a~)] /E  + o~T (A8) 

~:~2 = [~zz - V(ax~ + Cyyy)]/E + o~T (A9) 

~ ,  = (1 + v)z~y/E (A10) 

~y~ = (1 + v)$yjE (All) 

ezx = (1 + v)zzJE (A12) 

where E is the Young's modulus, v is the Poisson's 
ratio and aT is the thermal expansion. 

Appendix B: Definitions of terms 
SN: total steps number 
TD(N): time duration in step N 

N 
TIM(N) = ~ TD(K): time at the end of step N 

K=I  
TC(N): free setting expansion in step N 
TXI(N, I): displacement of investment at nodal point 
I in the radial direction in step N 

TYI(N, I): displacement of investment at nodal point 
I in the z-axis direction in step N 

N 
DXI(N,I) = ~ TXI(K,I): displacement of nodal 

K=I 
point I of investment at TIM(N) 

N 
DYI(N,I) = ~ TYI(K,I): displacement of nodal 

K=I  
point I of investment at TIM(N) 
TXE(N, I): displacement of nodal point I of ring in the 
radial direction in step N 
TYE (N, I): displacement of nodal point I of ring in the 
z-axis direction in step N 
FXI(N, I): applied force on investment at nodal point 
I in the radial direction in step N 
FYI(N, I): applied force on investment at nodal point 
I in the z-axis direction in step N 
FXE(N, I): calculated applied external force at nodal 
point I in the radial direction in step N 
FYE(N, I): calculated applied external force at nodal 
point I in the z-axis direction in step N 
NIE: number of contact points between the invest- 
ment and elastic body 
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